Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components.

نویسندگان

  • Z Y Jiang
  • H Gest
  • C E Bauer
چکیده

The chemotaxis gene cluster from the photosynthetic bacterium Rhodospirillum centenum contains five open reading frames (ORFs) that have significant sequence homology to chemotaxis genes from other bacteria. To elucidate the functions of each ORF, we have made various mutations in the gene cluster and analyzed their phenotypic defects. Deletion of the entire che operon (delta che), as well as nonpolar disruptions of cheAY, cheW, and cheR, resulted in a smooth-swimming phenotype, whereas disruption of cheB resulted in a locked tumbly phenotype. Each of these mutants was defective in chemotactic response. Interestingly, disruption of cheY resulted in a slight increase in the frequency of tumbling/reversal with no obvious defects in chemotactic response. In contrast to observations with Escherichia coli and several other bacteria, we found that all of the che mutant cells were capable of differentiating into hyperflagellated swarmer cells when plated on a solid agar surface. When viewed microscopically, the smooth-swimming che mutants exhibited active surface motility but were unable to respond to a step-down in light intensity. Both positive and negative phototactic responses were abolished in all che mutants, including the cheY mutant. These results indicate that eubacterial photosensory perception is mediated by light-generated signals that are transmitted through the chemotaxis signal transduction cascade.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Component of the Rhodospirillum centenum photosensory apparatus with structural and functional similarity to methyl-accepting chemotaxis protein chemoreceptors.

Photosynthetic bacteria respond to alterations in light conditions by migrating to locations that allows optimal use of light as an energy source. Studies have indicated that photosynthesis-driven electron transport functions as an attractant signal for motility among purple photosynthetic bacteria. However, it is unclear just how the motility-based signal transduction system monitors electron ...

متن کامل

Light-controlled motility in prokaryotes and the problem of directional light perception

The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damag...

متن کامل

Isolation of Rhodospirillum centenum mutants defective in phototactic colony motility by transposon mutagenesis.

The purple photosynthetic bacterium Rhodospirillum centenum is capable of forming swarm colonies that rapidly migrate toward or away from light, depending on the wavelength of excitation. To identify components specific for photoperception, we conducted mini-Tn5-mediated mutagenesis and screened approximately 23,000 transposition events for mutants that failed to respond to either continuous il...

متن کامل

Different Metabolomic Responses to Carbon Starvation between Light and Dark Conditions in the Purple Photosynthetic Bacterium, Rhodopseudomonas palustris

Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light an...

متن کامل

Sensing the light: photoreceptive systems and signal transduction in cyanobacteria.

Photosynthetic prokaryotes have highly developed abilities to detect and react to environmental signals. Light sensing is one of the most important capabilities of organisms that use light for photosynthesis and photomorphogenesis. This review addresses photoreception in cyanobacteria from the perception of light through the physiological responses observed in response to light-dependent signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 18  شماره 

صفحات  -

تاریخ انتشار 1997